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Epidemiological parameters are a necessity in understanding the spread of infectious 1

disease; from the rate of transmission, to severity, to serology, these parameters 2

underline our ability to quantify and respond to disease outbreaks. The estimation of 3

epidemiological parameters has a long history in epidemiology and the models and 4

methods applied have become more complex; and with this complexity comes the 5

numerous ways parameters can be reported in the literature. Here we provide guidance 6

on how to clearly communicate estimated epidemiological parameters, to maximise their 7

secondary use and minimise possible human errors that come with extracting 8

parameters from the literature and applying them in their own epidemiological analysis. 9

Our aim is for future work that reports epidemiological parameters to be consistent, 10

reproducible and comparable. 11

Introduction 12

Epidemiological parameters are quantities that characterise the spread of infectious 13

diseases, their epidemiological outcomes and temporal information on dynamics of 14

disease progression and transmission [1]. They are critical to understand epidemic and 15

pandemic dynamics and respond accordingly [2]. Most epidemiological parameters take 16

the form of distributions because there is inherent variability in the epidemiological 17

characteristics being measured. An illustration is the delay from infection to symptom 18

onset. The variability of individuals in immune response and variability of the infectious 19

agent in pathology are two ways, among many others, that lead to some individuals 20

having shorter time delay between infection and onset of symptoms. Due to most 21

epidemiological parameters being described by distributional forms they are estimated 22

by fitting distributions to epidemiological data on cases or contacts. 23

It has become general practice that when epidemiological parameters are required, 24

either for analyses of epidemiological case data or to make policy decisions like 25

quarantine duration, that the literature is searched to find a suitable peer-reviewed 26

publication reporting the parameter needed. However, this process has several 27

limitations. The time requirement to search through papers to find the highest quality 28

epidemiological parameter means that in time-limited scenarios, for example early in an 29

outbreak when the situation is evolving rapidly and new data is continually gathered, a 30
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suboptimal parameter set may be extracted and used. This has lead to previous ad hoc 31

reviews of epidemiological parameters for specific pathogens (e.g. Ebola [3]). The choice 32

of parameter is also likely to be somewhat subjective without a clear quality assurance 33

framework to evaluate and compare different parameter estimates. The manual 34

extraction of copying and pasting parameters out of the literature comes with the risk 35

of discrepancies entering the calculations. 36

Epidemiological parameters have been reported for many diseases and the data used 37

to infer parameter estimates and the methods of inference vary. 38

Efforts to compile a centralised database of epidemiological parameters have 39

highlighted the variability and ambiguity in parameter reporting which can lead to 40

uncertainty around what is being reported and how these epidemiological parameters 41

can be applied in other epidemiological analyses [4, 5, 6]. 42

This paper was motivated by several research groups independently attempting to 43

compile a comprehensive library of epidemiological parameters which could serve as a 44

public resource to easily search, filter and extract parameters. These groups gathered 45

for a workshop convened by the World Health Organisation (WHO) Collaboratory in 46

Spring 2024, in which a Global Repository of Epidemiological Parameters (GREP) was 47

discussed, as well as ideas for guidance on reporting epidemiological parameters. The 48

guidelines and examples of incorrect reporting and use were subsequently further 49

developed and resulted in this paper. 50

Our focus is on guidance for reporting epidemiological parameters from a variety of 51

study types and estimation methodologies. We do not cover or advice on best practises 52

for parameter estimation methods. There are several papers that address avoiding 53

biases and pitfalls [? ]; brittonEstimationEmergingEpidemics2019a]. Specificall for 54

guidance on methodologies when inferring delay distributions see (author?) [7] and 55

(author?) [8], and when inferring the reproduction number see ? ] and 56

abbottEstimatingTimevaryingReproduction2020. We focus on the reporting of 57

epidemiological parameters post-inference and the benefits of reporting standardisation 58

on the reuse of parameters by those involved in epidemic or humanitarian response. 59

We classify bad parameter reporting into two groups: 1) information loss and 2) 60

ambiguous reporting. Information loss is defined as the presentation or sharing of less 61

than the entirety of the parameter estimates, metadata and contextual information. For 62

example, if a method to infer a case fatality rate outputs the uncertainty of the risk but 63

this is not reported either in the text and the method cannot be reproduced then this 64

information is lost when others extract the parameters, i.e. only a subset of the full 65

inference is shared. Ambiguous reporting can be either the ambiguous reporting of 66

metrics, such as a X ± Y where Y could be the standard deviation or standard error, or 67

X(Y1 − Y2) where the bounds Y1 and Y2 could be a confidence interval or credible 68

interval when the inference framework is not reported. In both cases the secondary use 69

of the parameters either is forced to make an assumption on what is reported, or does 70

not utilise the information resulting in information loss. 71

Here we focus on the bias caused by badly reported epidemiological parameters on 72

simple epidemic methods, sometimes referred to as outbreak analytics [sensu 2], to 73

showcase the erroneous conclusions that can arise when using parameter estimates from 74

the literature. The biases produce here will likely extrapolate to more complex 75

epidemiologilogical modelling. Reporting guidelines can ensure standardised reporting 76

becomes more commonplace, which can make it easier to review, summarise and 77

aggregate epidemiological parameters. We hope that this paper, alongside other works 78

on reporting best practises in epidemiology [? 8] enhance the interoperability of 79
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research outputs and inputs. 80

Guidance 81

Parameter inference reporting 82

Parameterisation of distributions Many distributions have standard 83

parameterisations. In other words, they have one, two or in some cases three parameters 84

that are denoted by a name and often have a greek letter for shorthand. An example of 85

this is the Gamma distribution which has the parameterisation shape (α) and rate (β). 86

However, there are often alternative parameterisations, for the Gamma distribution this 87

is shape (k) and scale (θ). If left unspecified, the reported parameters may correspond 88

to different parameters depending on interpretation. Another example of ambiguous 89

reporting of distribution estimates is when the parameters and summary statistics have 90

similar names. This is the case for the lognormal distribution, whose common 91

parameterisation is meanlog (µ) and sdlog (σ) and common summary statistics reported 92

for a distribution are mean and standard deviation (sd), this is further confused as both 93

use the same greek letters. Therefore, it is possible to mistake the reporting of one set 94

of these for the other. Both types of misinterpretation outlined here can result in 95

substantial differences in the distributions (Figure 1). 96

Guidance

• Provide the formula for the Probability Density Function (PDF), or Probabil-
ity Mass Function (PMF) if discrete, in the text or supplementary material.

• Clearly report which distribution parameterisation was used to estimate
parameters and provide parameter names in the text.

• Share code used to estimate parameter(s) for others to reproduce and audit
methods.

97
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(a) Differences in distributions when misinterpreting the estimated parameters. (a) Two
gamma distributions, the blue shows a gamma distribution with shape (α) and rate (β) of 2,
the red shows a gamma distribution with shape (k) and scale (θ) of 2. The rate is the
reciprocal of the scale (β = 1/θ), but it is clear from the left hand plot that misinterpreting the
parameter leads to a vastly different distribution density. (b) Two lognormal distributions, the
orange shows the density of a lognormal distribution with meanlog (µ) and sdlog (σ) of 0.5,
and the green with the meanlog and sdlog of 1.87 and 1.00, respectively (these values are the
conversion from meanlog and sdlog into mean and standard deviation). Again showing how
misinterpreting the parameters can lead to differences in epidemiological parameters.

(b)
Figure 1

October 3, 2024 4/14



Source: Define the x values for the plot 98

Parameter estimates vs summary statistics Instead of reporting the parameter 99

estimates for a parametric distribution, summary statistics may be provided. In some 100

instances a set of summary statistics can be analytically converted into distribution 101

parameters (the specific summary statistics that can be converted into parameters 102

varies by distribution). In those cases where analytical conversion can be done there is 103

no loss in parameter estimate precision, i.e. summary statistics are sufficient statistics. 104

Commonly reported sufficient statistics are the mean and standard deviation or 105

variance of a distribution. However, it can also be the case that summary statistics that 106

cannot be analytically converted to distribution parameters are reported, for example 107

the mean or median and the 95th percentiles of the distribution. In these cases, 108

distribution parameters require a second estimation using a numerical conversion. 109

Numerical conversion can introduce more uncertainty and potentially return erroneous 110

estimates. Below we show an example of the bias and variance of distribution 111

parameters when numerically converted from summary statistics. . . (see {epiparameter} 112

R package article for full exploration of bias in numerical conversion). 113

Use case: Incubation period

Example use case: estimating the upper quantile of the incubation
period distribution
The incubation period, defined as the time between infection and the development
of symptoms, is an important epidemiological quantity for establishing guidance
on the duration of contact tracing of identified cases, as well as the duration of
isolation or quarantine for subsequently identified contacts. It is critical that the
duration of isolation mitigates the risk of onward transmission, but does not extend
any longer than necessary due to the costs, both financial and social, associated
with isolation.
The incubation period is most typically presented as a probability distribution, but
is often summarised by a mean and estimate of the variability (most commonly
standard deviation), rather than the full distribution.
Consider the following example. During a novel Ebola outbreak, the incubation
period is estimated using a gamma distribution on just a small number of observa-
tions (due to the lack of testing and contact tracing). MCMC methods are used to
obtain 100 realisations of a gamma distribution:

114
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This analysis has been repeated several times for this paper, corresponding to
different locations and time periods. For sake of space and simplicity, the results
per fit are presented in the typical fashion, as noted above:
Mean: 12.56 (95% CI 9.69 - 16.18)
SD: 13.13 (95% CI 8.6 - 18.16)
However, this omits critical information about the upper 95% quantile of the dis-
tribution, which from the figure, is highly variable across realisations. Specifically,
this is estimated as:
95% quantile: 38.8 (95% CI 28 - 52.4)
which has substantial uncertainty.
In a future outbreak of a viral hemorrhagic fever, the public health authority in
the affected country looks to the previous analysis to guide their quarantine policy.
Using only the provided information (the mean and SD), it is possible to use
method of moments for the gamma distribution to obtain estimates of the shape
and scale parameters (0.93 and 13.62, respectively). Parameterising a gamma
distribution according to these parameters corresponds to a 95% quantile of 39
days. This recovers the central estimate above well. However, it is not possible to
obtain any uncertainty around this estimate without the authors having provided
the full set of samples used to generate these estimates. This may provide a false
sense of certainty on which the quarantine policy is based, whereas there may be
an argument to either extend or reduce this based on the considerable uncertainty
estimated above.

115

Epidemiological parameters can be dimensionless quantities, for example R0 or 116

secondary attack rate, while others have units. It is especially critical for the accurate 117

reuse of with dimensions parameters that the units are reported. For parameters with a 118

temporal dimension, such as delay distributions, the unit of time ensures that 119

distributions fitted to data on days or weeks can be clearly understood. Another 120

example is viral load data that can be reported as Ct or log10 RNA copies/ml. Many 121

epidemiological parameters will have conventional units, for example incubation period 122

and serial interval in days, or population density in individuals/km, but if readers have 123

to assume units then misinterpretation can have consequences for others that apply the 124
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findings in their own work. 125

Guidance: 126

• Report the estimated distribution parameters first and foremost before optionally 127

reporting summary statistics. This will avoid any secondary estimation step which 128

can introduce unwanted and unnecessary bias. 129

• If a parameter has a unit, report this with the estimates, ensuring it matches the 130

data of input of the model. 131

Use case: Severity

Use case: Ambiguous reporting of onset-to-death delay distribution and
erroneous CFR estimates
In a scenario in which the case fatality risk (CFR) needs to be calculated for an
ongoing, growing disease outbreak an onset-to-death delay distribution is required
to calculate an unbiased CFR estimate, due to some individuals being infected but
theiry outcome (i.e recovery or death) is unknown (author?) [9].
A line list of the current outbreak is available, but no estiates of the onset-to-
death delay are available for this outbreak and there is not enough case data to
reliably estimate it from the line list. Therefore a previously inferred onset-to-death
distribution is searched and extracted from the literature for the same pathogen
from a past outbreak.
The paper reporting the onset-to-death states:

“. . . the average duration between the time when symptoms first
appeared and death of the patients was estimated. The mean onset-to-
death delay was of 14.5 days, with a standard deviation of 6.7.”

The ambiguous reporting of the esimates means the onset-to-death delay can be
(mis)interpreted in several ways. The paper is reporting the summary statistics
mean and standard deviation for a lognormal distribution they fitted to the data.
The estimates could be misinterpreted as meanlog and sdlog do the lognormal
distribution, or could be misinterpreted as the summary statistics of the raw data
(i.e. sample statistics). The CFR calculation for an unbiased estimate requires a
parametric probability density/mass function. Therefore, given the ambiguity we
demonstrate the correct interpretation and three misinterpretations of the reported
onset-to-death and show how the CFR varies as a result. We use the {simulist}
and {cfr} R packages to simulate line list data and calculate the CFR, respectively
(author?) [10] and (author?) [11].
Source: Article Notebook
Source: Article Notebook

132
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Source: Article Notebook
Source: Article Notebook
Source: Article Notebook
The correct interpretation can analytically convert the mean and standard deviation
to the lognormal distribution parameters (µ = 2.86, σ = 0.53) and parameterise
the onset-to-death, resulting in a CFR of 0.3042, or 30.42%. Misinterpreting the
estimates to be the lognormal parameters results in an overestimated CFR of
NA. Assuming that the reported estimates are sample summary statistics, the
distribution can be assumed, here we test the assumption that it is a lognormal
(correct assumption) and a gamma distribution (incorrect assumption). The
assumed parametric distribution form can be used to simulate a sample and the
same distribution can be fit to that sample to estimate the parameters. In the
case of assuming a lognormal distribution the CFR is estimated as 0.2681, whereas
assuming a gamma distribution results in a CFR of 0.2426. The estimated CFR is
biased in both cases but more so when the distribution is assumed incorrectly.

133

Parameter uncertainty vs sample variability The reporting of distributions is to 134

encapsulate the variability of epidemiological delays, transmission, severity and others. 135

However, there is also uncertainty around the parameters estimated. If it is not clearly 136

stated that a distribution was fit to the data, it can be unclear whether the uncertainty 137

around the mean corresponds to variation in the epidemiological case data, 138

i.e. differences between individuals resulting in a distribution, or to the confidence or 139

credible interval around the estimated mean. 140

Use case: Sample variability versus uncertainty

Issue: A measure of uncertainty is provided, but it is not clear whether this
uncertainty is due to sample variability, or is an uncertainty around the estimator.
Implication: Erronoeus attribution of uncertainty to sample variability or vice versa
can bias the downstream analysis. This is particularly true when the underlying
data are not shared.

141
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Illustration: We illustrate this issue using simulated data from a gamma distribution
D. We first simulate some data, get the observed mean and sd, and the uncertainty
around these estimates. We then compare the observed data with that simulated
with the erroneous interpretation of the uncertainty.
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Source: Article Notebook
142

Reporting inference method The inference method used to infer epidemiological 143

parameters and the uncertainty that is coupled with those estimates is also important 144

to report precisely for it to be used in downstream analyses. One common distinction 145

that can be made between inference method is whether it uses Maximum likelihood 146

estimation (MLE) or Bayesian estimation. The resulting uncertainty of parameters, 147

confidence intervals (CI) for MLE and credible intervals (CrI) for Bayesian fitting, 148

cannot be interpreted or applied interchangeably [? ]. Therefore if wanting to propagate 149

uncertainty in parameter estimates, incorrectly treating CI as CrI or vice versa will lead 150

to bias. 151

Reporting on Bayesian fitting also has several summary statistics to describe the 152

central tendency of the inferred posterior sample, for example, mean, median, mode. It 153

is beneficial for the specific central tendency statistic used to be explicitly stated. 154

Guidance: 155

• Report distribution parameters with uncertainty if available. This can be 156

reporting the confidence interval (CI) or credible interval (CrI) making it clear 157

• When using Bayesian inference, specifying methods used for posterior distribution 158

and making posterior sample openly available via data sharing platform, e.g., 159

Zenodo, Data Dryad. 160

The types of distributions commonly fit to estimate delay distributions, such as 161

serial interval, onset-to-event and incubation period, are Gamma, lognormal and 162

Weibull. These are used as they are strictly positive (sometimes offsets or other 163

distributions are used to account for negative serial intervals (Prete Jr. et al., 2021)) 164

and are right-skewed, meaning that most of the distribution mass (i.e. area under the 165

curve) is the left of the mean (Figure 1). It is best practice to fit multiple distributions 166
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to the data and compare models using likelihoods, information criteria or likelihood 167

ratio tests. By reporting these comparisons with each set of estimated parameters it 168

allows others to use the distribution they choose while also being aware of the 169

goodness-of-fit if choosing the non-best-fitting distribution. 170

Guidance: 171

• If multiple distributions are fit to the raw case data, report the goodness-of-fit 172

(e.g. maximum likelihood, Akaike Information Criterion) and the parameter 173

estimates of each distribution either in the main text or in the supplementary 174

material. 175

Contextual information and metadata 176

Since pathogen transmission and spread is known to be affected by socioeconomic, 177

demographic, and climatic factors, reporting relevant contextual information alongside 178

parameter estimates is crucial to understand the circumstances in which these estimates 179

were obtained. Doing so will allow external readers to make informed decisions about 180

the generalisability of the reported parameters and usability in their own analyses. 181

An important contextual element is detailed information about the sample 182

population from which parameters were estimated, including factors such as the 183

geographic location, age distribution, and comorbidities. This is particularly relevant in 184

those studies where only a specific subset of the population was sampled, such as 185

health-care workers, pregnant individuals, or immunocompromised patients. 186

Other relevant details of the study, such as the type of design and sampling strategy, 187

should not be overlooked, when reporting epidemiological parameters, as these provide 188

relevant contextual information to assess the representativeness of the data and validity 189

of the statistical methods applied. For instance, methods for estimating parameters like 190

the serial interval require considering data collection methods, as different adjustments 191

for biases are needed depending on whether data on transmission pairs was conducted 192

prospectively or retrospectively (see section 1.5). The specific case definition used to 193

estimate parameters should also be reported, where possible, given the range of clinical 194

signs that many diseases exhibit at different stages of infection, which can have an 195

impact on the estimation of parameters like the incubation period or delays from onset 196

to outcome. 197

Use case: Seroprevalence

Example use case: the importance of clear reporting of seroprevalence
estimates
Estimates of seroprevalence provide critical insights into the level of susceptibility
within a population, in turn informing the implementation of control measures,
including vaccinations (e.g. through the critical fraction requiring vaccination to
control spread).
A novel coronavirus has been identified and is spreading throughout the population.
A rapid seroprevalence study is undertaken to understand levels of immunity
of the population. Initially, 5,000 tests are carried out via enzyme-linked
immunoabsorbsent assay (ELISA), of which 250 are positive. This corresponds to
a seroprevalence estimate of 5% (95% exact binomial confidence intervals 4.4% -
5.6%).
However, it is known that ELISA assays can be prone to cross-reactivity with
other coronaviruses, which are also in circulation in this population. Therefore, it
is decided to undertake neutralisation tests, which are typically more sensitive, to

198
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provide further confidence in the level of population-immunity. Due to a limited
budget, only 500 tests can be re-tested with a neutralisation assay, and so all of
the 250 positive tests and 250 of the 4,750 negatives are selected randomly for
further testing.
Of the 500 samples sent for further testing, only 50 return as positive. For
the neutralisation tests, in respect of the ELISA tests, this corresponds to a
seroprevalence estimate of 10% (95% exact binomial confidence intervals 7.5% -
13%), which is notably higher than the seroprevalence obtained under ELISA only.
However, discounting the results of the 4,500 tests incorrectly inflates estimated
seroprevalence, implying a higher level of immunity in the population than that
which is indicated by this study as a whole. Looking at the positive neutralisation
tests out of the total tests (ELISA and neutralisation), seroprevalence is estimated
as 1% (95% exact binomial confidence intervals 0.7% - 1.3%), again subtantially
lower than suggested when using the neutralisation test denominator only.

Using the incorrect denominator could have important consequences for future
planning and control strategies. Consider a population of 1,000,000 people. The
basic reproduction number of this novel coronavirus is estimated at around 4,
implying a herd immunity threshold (HIT) of 75%.
If it is (incorrectly) assumed that seroprevalence is 10%, this implies that 660,000
members of the population require immunity before herd immunity is reached.
However, it is actually 740,000 members of the population requiring immunity to
reach this threshold (an additional 90,000 people) under the correctly specified
seroprevalence estimate of 1%.
If immunity were to be required through vaccination, then an additional 90,000
vaccines would be required. In the absence of a vaccine, e.g. if immunity were to be
acquired via natural infection, assuming an overall case hospitalisation ratio (CHR)
of 20% and case fatality ratio (CFR) of 1%, this suggests an additional 18,000
hospitalisations and 900 deaths than could be expected under the assumption of
a seroprevalence of 10% respectfully. In at least the case of hospitalisation, this
may require further preparation at hospital-level and the implementation of surge
capacity protocols.
Source: Article Notebook

199

Where parameters are reported or inferred during an active outbreak, we 200

recommend to provide information about the time into the outbreak since the first case 201

was reported and epidemic phase at the time of the analysis, especially when inferring 202

delay distributions (see section 1.5). Further contextual information is also relevant for 203

a nuanced understanding of how parameter estimates may change throughout an 204

outbreak, e.g., due to changes in containment measures, therapeutics and vaccination, 205

or volume of testing. For instance, advancements in the therapeutic approach to critical 206

care patients resulted in a significantly higher delay from onset to death for COVID-19 207

patients during the summer of 2020 (mean of 24.7 days), compared to the first wave of 208

the pandemic (mean of 19.6 days) (Ward and Johnsen, 2021, PLoS). 209

Contextual information about the disease’s causative agent should also be reported, 210

including pathogen name, and, where applicable, its type, subtype and/or strain. This 211

information is relevant, as the transmissibility, pathogenicity and severity of disease, 212

and their resulting epidemiological parameters often vary across strains of the same 213

pathogen. For instance, the incubation period for Influenza type A is reportedly longer 214

on average than that of Influenza type B, with a median of 1.4 and 0.6 days, 215

respectively (Lessler, 2009). If the causative agent is unknown to the authors, either due 216
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to it being a novel pathogen, or simply because this information is not available, this 217

should be explicitly stated in the publication. Beyond details about the causative agent, 218

authors should also specify the transmission routes that have been considered when 219

estimating parameters. This is particularly crucial for zoonotic and vector-borne 220

diseases, where explicit clarification is needed on whether the estimates account for 221

human-to-human transmission only, or if animal-to-human or vector-to-human 222

transmission is also accounted for. 223

Guidance: 224

• Provide demographic information about the population and for the sample that 225

was used to estimate epidemiological parameters. 226

• Specify whether analyses were stratified by certain groups, e.g., by age, or 227

conducted using data for the whole population. 228

• Indicate whether reported parameters were obtained during an ongoing outbreak 229

and, if so, provide information on the epidemic phase and time since outbreak was 230

first declared. 231

• Clearly state whether variant(s) of the pathogen of interest is known and, if so, 232

report the name of the variant and how this was determined. 233

• Specify which transmission pathways of disease were considered, e.g., 234

human-to-human only, or including animal-to-human transmission. 235

Open science and reproducibility to enhance reuse 236

The complexities involved in estimating and reporting epidemiological parameters mean 237

that it is unlikely that all methodological aspects and considerations can be documented 238

in the paper or even supplementary material. By sharing data and code it enables 239

reproducibility and auditing of the methods used. Sharing the code used to infer an 240

epidemiological parameter enables others to see which method, as well as any other 241

packages that were used. There are several platforms that easily enable code sharing, 242

most common are GitHub, GitLab and BitBucket. To release the software used and 243

provide a unique identifier (e.g. DOI) services like Zenodo, Figshare and Dyrad, this 244

provides a single referenceable snapshot of the code, removing any issue if the code 245

changes on, for example GitHub. Following these and other good practices for code 246

sharing will help others navigate and review the code (Wilson et al., 2017). Openly 247

sharing code enables others to reproduce the estimates and verify the estimates. They 248

may also be able to assess the quality of the methods with respect to the available data 249

and possible bias-adjustments that may be required when working with real-time 250

outbreak data (citation needed). Sharing the analysis code can also resolve ambiguities 251

in parameter reporting. If the parameterisation of the distribution is unclear from the 252

text (see Section 1) then by checking parameter arguments in the code clarifies their use. 253

Sharing the data is as important as sharing the code. By data we mean the input 254

data (i.e. outbreak case data) and output data (i.e. parameter estimates and fitting 255

metadata). If possible the raw data used to fit a model to estimate an epidemiological 256

parameter should be openly available. By sharing the raw data it enables 257

reproducibility of the analysis used to estimate the epidemiological parameters, but also 258

allows others to apply different models to the data. 259

Openly sharing epidemiological data can be restricted by personal identifiable 260

information (PII) and data usage restrictions. There are some methods available to 261

enable reproducibility even when the raw data cannot be shared. Anonymisation, if the 262

personal identifiable information (PII) is not required by the method to infer the 263

epidemiological parameter then this information can be removed, de-identified or 264

anonymised prior to uploading the data (citations needed). Mock or synthetic data can 265
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be generated which has the same characteristics as the empirical data. This enables the 266

analysis to be reproduced while removing any risk of identification or leaking personal 267

information. 268

The epidemiological parameter output should also be shared in full when possible. 269

Often if the epidemiological parameter are distribution parameters these will be 270

reported in the text. But the estimates correlation matrix, variance-covariance matrix, 271

convergence metrics (e.g. . . . ) should be shared. For Bayesian analyses sharing the 272

posterior distribution is most beneficial for reuse as it allows researchers to calculate 273

whichever summary metric their use case requires (e.g. Highest Posterior Density (HPD) 274

Interval). 275

Epidemiological parameter use and disjoint analysis pipelines 276

The aim of this paper has been to provide a set of reporting guidelines for 277

epidemiological parameter, with the objective to make reusing them in other 278

epidemiological analyses more reliable, with examples showcasing when analysis error 279

can result from erroneous or ambiguous reporting. This argument is premised on the 280

downstream epidemiological analysis being disjoint from the estimation of the 281

epidemiological parameters, in other words the method that uses the parameters to 282

estimate or infer another aspect of an outbreak does not estimate the parameters. An 283

example of this is when an previously estimated generation time, or serial interval as a 284

more commonly available replacement, is used to estimate the real-time reproduction 285

number. If the data is available to jointly estimate the generation time or serial interval 286

with the reproduction number, then this is the statistically optimal approach. However, 287

for a variety of reasons, primarily model complexity of joint models leading to 288

mathematical and computations simplification being required, the disjoint or 2-step 289

analysis procedure is common (ref). Some models to offer joint estimation given 290

sufficient data (ref). There have not been many studies exploring the statistical 291

performance of joint versus disjoint estimation (check this sentence and find ref). There 292

is another aspect to consider, whether a set of epidemiological parameters exists where 293

the features of the data (e.g. sample size, collection procedure) make it more accurate 294

than the available at hand. In this scenario even if a joint estimation framework is 295

available and feasible, it might be better to choose estimated parameters. The 296

contextual information of the data, such as demography, geography, and comorbidities 297

of the sample, should also be considered in such a case as the two groups might not be 298

epidemiologically equivalent. That is all to say that reporting guidelines are relevant 299

due to the widespread use of disjoint estimation where clear, ambiguous reporting with 300

coverage of key piece of statistical and contextual information are required. 301

Conclusion 302
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